
The Federation API
Final Solution's most prominent feature over other imageboard software is its ability to federate across
multiple nodes. This document describes the object format and public API for this federation system.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described
in RFC2119.

Table of Contents
The message format 1

Parsing message contents 2

The federation trust mechanism 2

Post and thread identifier format 2

Post and thread attachments 3

Message types 3

newpost 3

newthread 4

filedelete 4

The Federation HTTP API 5

/federation/ 5

/federation/node 5

/federation/trusted 5

The message format
All federation messages contain a few required parameters.

{
 "nodeid": "NODEID", // The node identifier.
 "type": "newpost", // The type of the message.
 "content-type": "application/json", // The content type of this message.
 "content": "{ ... }", // The content of the node's message.
 "signature": "...", // Base64 encoded PGP signature
}

The parameters are given in more detail below:

nodeid

The short identifier of the node. This will be between 3 and 6 characters. Node IDs shorter than 3
characters will be rejected by the reference implementation. This ID MUST be known and trusted
by the node receiving the message. The protocol for trusting is explained in The federation trust
mechanism.

type

The type of the message being sent. See Message types.

content-type

The type of the content inside the content variable. See Parsing message contents.

https://tools.ietf.org/html/rfc2119

content

The full content of the message. The data will be parsed based on the content-type parameter.

signature

Base64-encoded PGP signature for the content string. This signature MUST be created with the
publicly advertised RSA key as defined by The federation trust mechanism.

Parsing message contents
The contents of the message MUST be parsed based on the content-type parameter. The
content-type parameter MUST be in two formats:

• A string containing just a mime-type, such as application/json. The encoding is assumed to
be plain.

• A string containing a mime-type and an encoding, separated with a semicolon, i.e.
application/json;base64.

The following mime-types are standard and MUST be supported by a compliant node:

text/plain

Plaintext content to be used verbatim.

application/json

A JSON encoded value, such as an object or an array.

The following encodings are standard and MUST be supported by a compliant node:

plain

No special encoding is used.

base64

The content is encoded with the Base64 format as defined by RFC4648 Section 4.

urlencoded

The content is percent-encoded as defined by RFC3986 Section 2.

The federation trust mechanism
In order for a federation node to get its messages accepted by other nodes, those nodes MUST first trust
the node. For this to happen, the federation node MUST advertise its NodeID and public key via the HTTP
API as specified in /federation/node.

When a federation node decides to trust another node, it MUST retrieve the information about this node
via a GET request to /federation/node, and then store this information for future use. However, if the node
has already trusted another node with the same NodeID before, the node MUST NOT trust the foreign
node unless approved explicitly by the node administrator.

Federation nodes MUST advertise nodes that they have EXPLICITLY trusted via the HTTP API as
specified in /federation/trusted. Other nodes which already trust this node MAY automatically trust the
advertised nodes. However, if a node decides that it will no longer trust a specific node, it SHOULD stop
trusting nodes it implicitly trusted.

Nodes MAY recursively trust nodes implicitly based on their explicitly trusted nodes; if a node decides to
recursively trust other nodes, it SHOULD set a limit on the recursion depth. The recommended recursion
depth limit is 2.

Post and thread identifier format
On federated boards, multiple federation nodes will be collaborating on the same board. To prevent race
conditions, the identifiers are in a NODEID:POSTID format for all threads and posts.

https://tools.ietf.org/html/rfc4648#section-4
https://tools.ietf.org/html/rfc3986#section-2

Post and thread attachments
New posts and threads can have a number of files. A node receiving new posts and threads SHOULD list
the files alongside them.

The structure of a single file is as follows:

{
 "filename": "image.jpg", // The original name of the file.
 "url": "https://imageboard.xyz/files/a0d5c...7a9.jpg", // The full path to the file.
 "thumbnail": "https://imageboard.xyz/thumbs/a0d5c...7a9.jpg", // The full path to the file's thumbnail.
 "mime": "image/jpeg", // The MIME-type of the file.
 "hash": "a0d5c...7a9", // The SHA256 hash of the file.
 "attributes": { // MAY contain any of the following attributes.
 "width": 200, // Width of the file, if applicable. May not exist.
 "height": 200, // Height of the file, if applicable. May not exist.
 "duration": 300, // Duration of the file, if applicable. May not exist.
 "pages": 10, // The page count of the file, if applicable. May not exist.
 },
 "spoiler": false, // Whether the file was spoilered.
}

Files are stored in their originating nodes. The receiving node MAY mirror the file, but it is not required. If a
file is not stored locally and is deleted on the originating node, the originating node MUST send out a
filedelete message to the other nodes, described below.

Message types

newpost
A new post was made to a board.

Parameters:

board_uri

The unique URI of the board which the content was posted to. The receiving node MAY ignore
this message if they are not serving the board which this post was made on. The receiving node
SHOULD ignore this message if they have explicitly disabled/blacklisted the board the post was
made on.

thread_id

The ID of the thread, as described in Post and thread identifier format. The receiving node MUST
reject this message and return an error if the thread does not exist on the board. The receiving
node SHOULD ignore this message if the thread was locally removed.

post_id

The ID of the post as an integer. The receiving node MUST reject this message and return an
error if another post with the same ID already exists from the same node.

name

The name field of the post as a string. This value MUST be 32 characters long at most.

subject

The subject field of the post as a string. This value MUST be 64 characters long at most.

options

The options field of the post as a string. This value MUST be 64 characters long at most.

body

The body of the post. The body content can be parsed by the receiving node in any way needed.
The node SHOULD truncate the post body if its length is over the limit specified by the node.

body_html

The body of the post in HTML format. The receiving node MAY ignore this field if it decides to
parse the post body by itself. The node SHOULD truncate the body HTML if its length is over the
limit specified by the node.

poster_id

The thread- and node-specific ID of the poster. The receiving node MUST accept posts with the
same poster ID coming from a certain node as the same user, and act accordingly.

files

A list of files, the format of which is specified in Post and thread attachments.

newthread
A new thread was created on a board.

Parameters:

board_uri

The unique URI of the board which the content was posted to. The receiving node MAY ignore
this message if they are not serving the board which this post was made on. The receiving node
SHOULD ignore this message if they have explicitly disabled/blacklisted the board the post was
made on.

thread_id

The ID of the thread as an integer. The receiving node MUST reject this message and return an
error if another thread with the same ID already exists from the same node.

name

The name field of the thread as a string. This value MUST be 32 characters long at most.

subject

The subject field of the thread as a string. This value MUST be 64 characters long at most.

options

The options field of the thread as a string. This value MUST be 64 characters long at most.

body

The body of the thread. The body content can be parsed by the receiving node in any way
needed. The node SHOULD truncate the thread body if its length is over the limit specified by the
node.

body_html

The body of the thread in HTML format. The receiving node MAY ignore this field if it decides to
parse the thread body by itself. The node SHOULD truncate the body HTML if its length is over
the limit specified by the node.

poster_id

The thread- and node-specific ID of the poster. The receiving node MUST accept posts with the
same poster ID coming from a certain node as the same user, and act accordingly.

files

A list of files, the format of which is specified in Post and thread attachments.

filedelete
One or more files were deleted from a certain node.

Parameters:

hashes A list of SHA256 hashes which correspond to the files that have been deleted.

The Federation HTTP API
All API request and response content MUST be in JSON format (content type application/json).

/federation/

POST
The target of all federation messages. Other nodes must send the messages described in this document
to this endpoint.

/federation/node

GET
Retrieve information about the federation node.

Example response:

{
 "nodeid": "NODEID",
 // -----BEGIN PGP PUBLIC KEY BLOCK-----...
 "pubkey": "LS0tLS1CRUdJTiBQR1AgUFVCTElDIEtFWSBCTE9DSy0tLS0t...",
 "fingerprint": "0123456789ABCDEF0123456789ABCDEF01234567"
}

Parameters:

nodeid

The unique identifier of this node. Other nodes will not trust this node if another node with the
same identifier was previously trusted, so the identifier must not exist on the network beforehand.
See The federation trust mechanism.

pubkey

The base64-encoded PGP public key block for this node. This public key will get stored by other
nodes and will be used to verify the authenticity of the messages from this node.

fingerprint

The RSA fingerprint of the PGP key for this node. The string MUST be exactly 40 characters
long.

/federation/trusted

GET
Retrieve the federation nodes this node explicitly trusts.

Example response:

{
 "nodes": [
 {
 "nodeid": "NODEA",
 "info": "https://api.achan.org/federation/node"
 },
 {
 "nodeid": "NODEB",

 "info": "https://api.bchan.org/federation/node"
 },
 // ...
]
}

Parameters:

nodes

A list of nodes this node explicitly trusts. Each item is an object containing the following
properties:

nodeid

The ID of the trusted node.

info

An absolute URL pointing to the /federation/node endpoint of the trusted node.

	The message format
	Parsing message contents
	The federation trust mechanism
	Post and thread identifier format
	Post and thread attachments
	Message types
	newpost
	newthread
	filedelete

	The Federation HTTP API
	/federation/
	POST

	/federation/node
	GET

	/federation/trusted
	GET

